and 34% moderate disturbance. Unfortunately, removing livestock and resting the veld does not lead to natural recovery of the vegetation, as seeding establishment is constrained by the exposed soil’s temperature extremes and reduced water-holding capacity. Essentially, to restore this thicket type requires active intervention, which is what this story is about.

Degradation of thicket has negative socio-economic repercussions. Reductions in diversity, soil carbon, soil quality, and plant productivity all lead to lower livestock productivity. Decreases in availability of wood, wild fruits and medicinal plants used by rural communities result in lowered income. A loss in annual potential income of R1500 per household is a significant amount for struggling rural people.

Restoration is expensive, and the active restoration of hundreds of hectares of former healthy thicket, rich in spekboom plantations, appears at first sight to be unfeasible. But there is compelling scientific evidence that spekboom with its rather special characteristics, together with the possibilities of earnings via the carbon market, and the creation of jobs in the economically depressed rural areas, may provide an all-round solution.

How grazing affects spekboom

It is interesting that, although spekboomveld evolved under the grazing of hulking megaherbivores - elephant and black rhino - it is especially vulnerable to heavy grazing by goats. The explanation for this anomaly is that indigenous animals feed from above, promoting the natural umbrella-shaped canopy. In contrast, goats tend to feed from underneath, with the result that overgrazing destroys this canopy. With indigenous browsing, the shrub forms a ‘skirt’ of branches which are able to root and proliferate on contact with the ground, while broken branches are able to re-establish, much like planted cuttings. The theory is that the plant’s unique umbrella-shaped canopy maintains a cool, drier microclimate conducive to accumulating carbon-rich ground litter, which may also explain the rates of carbon sequestration which are extraordinarily high for an arid environment.

Carbon storage in spekboom

Currently, there is an initiative which is building on the sound scientific evidence that spekboom is something of a ‘superplant’ when it comes to its extraordinary carbon storing capabilities. Data gathered over the last seven years show that carbon storage in intact spekboom thicket in the arid south-eastern Cape exceeds 20 kg of carbon per square metre of vegetation, which is equivalent to that of moist subtropical forests. In addition, the plant’s ability to sprout from re-planted truncheons, without irrigation or cultivation in a nursery, makes it a very good candidate for large-scale restoration of degraded land. Furthermore, spekboom is thought to be especially efficient in capturing carbon as it is among those special and plants which can switch from using the ‘normal’ photosynthetic pathway (C3) to another water-conserving (CAM) pathway when conditions are dry. The ability to use the C3 pathway when the soil is moist means it is more productive than those succulents that use only CAM.

R3G is a group of scientists who are currently evaluating the feasibility of massive-scale restoration of thicket. Their project includes possibly one of the biggest restoration trials in the southern hemisphere. Spanning the entire Thicket Biome, a distance of about 800 km, this investigation aims to determine areas for ‘optimal survivorship’ and best growth from cuttings of the succulent-leaved shrub, spekboom, as well as variation in rates of carbon sequestration.

One aim of this trial is to determine the potential for re-planting to earn carbon credits on the international market as a future means of funding land restoration on freehold and communal land. R3G is working in close partnership with the Department of Water Affairs and Forestry’s Working for Woodlands Project and supported by poverty-alleviation funds from the government’s Expanded Public Works Project. The actual re-planting is being supervised by the Gamtoos Irrigation Board (GIB), the implementing agency which has been managing large-scale plantings over the last three years, restoring close to 400 ha in the Baviaanskloof Nature Reserve (a World Heritage Site), the Addo Elephant National Park and the Great Fish River Reserve.

Data on the remarkable rates of carbon storage under re-planted spekboom were collected on the farm Krompoort, between Uitenhage and Steytlerville, inland of Port Elizabeth. Over the last 30 years, the farmer Mr Henry Graham Slater, has systematically

Restoring valuable spekboomveld

One of the biggest restoration trials in the Southern Hemisphere hopes to re-establish badly degraded spekboomveld and investigate carbon-trading opportunities

by Shirley Pierce, Richard Cowling, Ant Mills, Mike Powell and Ayanda Sigwela, R3G*
restored a degraded hill slope using spekboom truncheons. Now, the oldest spekboom plants stand more than 2 m tall and cover 90% of the planted site, an impressive growth from truncheons planted in bare ground under a rainfall of only 250-350 mm per year. The different-aged plantings enabled estimates of potential rates of carbon sequestration, with the oldest stand having sequestered 11 kg of carbon per square metre over 27 years, indicating an average rate of 0.42 kg of carbon per square metre per year. This rate of carbon sequestration is comparable to many temperate and subtropical forests, and potential earnings through carbon credits are likely to rival forest-planting schemes.

Impressive results
The biome-wide trial commenced in January 2008, and already more than 100 of the planned 300 plots have been established. Farmers have been keen to participate in allowing trial plots to be located on their land, and many are going ahead with their own plantings. The trial plots (25 x 25 m each) are located in degraded thicket, and each plot is fenced off and manually planted with spekboom truncheons by trained teams under the supervision of the GIB. Increments in carbon (above and below ground) are then monitored to determine rates of carbon storage.

Preliminary observations suggest that as the productive and water-efficient spekboom shrubs establish sufficiently to shade the soil surface and produce litter, the quality of the soil starts improving. This enables other flora and fauna to re-establish, and biodiversity begins to return.

Concurrent with the field trials, R3G is investigating the complex requirements to qualify for carbon credits. Trade in carbon operates via two paths: the formal compliance market (controlled by the Clean Development Mechanism, an arrangement under the Kyoto Protocol), or via the informal, voluntary market. The spekboom project may well be best suited to the latter market, which follows many of the formal procedures but relies on individuals who care about climate change, or else is dependent on those corporate companies with social responsibility. The voluntary market also takes into account the sustainable development of rural livelihoods and benefits for biodiversity.

Ultimately the potential benefits of restoration to degraded thicket landscapes are enormous environmentally, socially and economically: increased wildlife carrying capacity, reduced soil erosion, improved water retention and infiltration in the soil, and the return of biodiversity, while earning carbon credits on international markets which can provide employment and income to rural communities. Surely a win-win-win situation!

For centuries, the beauty and grace of the Red Disa, or Pride of Table Mountain, Disa uniflora has enthralled botanists and horticulturists around the world. This species, together with the plethora of hybrids between it and its closely related species (like Disa tripetaloides and Disa cardinalis), still excite and interest orchid growers. These plants are normally considered challenging to grow because their natural habitats, up in the mountains of the Western Cape in South Africa, are used to cold streams and a fairly cool environment where it flowers in the dry summer after a winter rainfall period. These conditions can be quite difficult to emulate in cultivation, although many growers around the world have mastered the required techniques. Water quality is of paramount importance, with only rainwater or purified water recommended for the best results. However, not all South African disas are red, and they are certainly not all found in the Western Cape! Considered just as challenging to grow are the other terrestrial Disa species that grow along the eastern half of South Africa, from the coastline up to the foothills of the Drakensberg mountains, and even into more inland areas at higher elevations. These species have not been used for breeding.

GET CONNECTED:
The authors can be contacted at the Department of Environmental Science, Rhodes University, Banger House, Somerset Street, Grahamstown, 6140. Tel: 046 603-7002, fax: 046 622-9319. More information on spekboom can be found at: www.environment.gov.za/soer/nsoer/Data/vegrsa/veg8.htm | www.plantzafrica.com/plantnop/portulacarafra.htm | www.urbansprout.co.za/spekboom_seed_up_co2 | www.urbansprout.co.za/spekboom_soaks_up_co2